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Abstract In this paper, we derive the augmented Birkhoff equation of linear contraints

nonholonomic systems firstly. Base on a conserved quantity or a combination of some con-

served quantities, we study the stability of linear contraints nonholonomic systems. Finally, a

numerical example is provided to demonstrate the potential and effectiveness of the method.
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1 Introduction

In this paper, we study the stability of linear contraints nonholonomic systems.

The stability of dynamical systems is one of the most basic issues in system theory.

The theory of the stability of the nonholonomic control systems with linear contraints have

attracted a lot of interest recently. The most complete contribution to the stability analysis

of nonlinear systems was introduced by A. M. Lyapunov [1], the Lyapunov method is the

most extensive analysis method currently. There are many stability results are obtained in

the references, e.g., [2]. But it is very difficult to find a suitable Liapunov function.

Motivated by [3], in this paper, we derive the augmented Birkhoff equation of linear

contraints nonholonomic systems firstly , construct a Lynpunov functional candidate by using

a conserved quantity or a combination of some conserved quantities, and study the stability of

linear contraints nonholonomic systems by the constructed Lynpunov functional candidate.

Finally, a numerical example is provided to demonstrate the potential and effectiveness of

the method.

2 Problem formulation and preliminaries

Lemma 1 [4] For the Birkhoff system

(
∂Rν

∂aµ
− ∂Rµ

∂aν
)ȧν − ∂B

∂aµ
− ∂Rµ

∂t
= 0(µ, ν = 1, 2, . . . , 2n), (1)
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if the infinitesimal transformations of group

t∗ = t + εαξα
0 (t, a), aµ∗(t∗) = aµ(t) + εαξα

µ (t, a), (2)

are the Noether quasi-symmetrical transformations, then the system possesses r linearly

independent first integrals

Iα = Rµξ
α
µ −Bξα

0 + Gα = Cα (α = 1, 2, . . . , r), (3)

where εα are infinitesimal parameters, ξα
0 , ξα

µ , Gα are the generating functions and normalized

function of the infinitesimal transformations respectively.

Lemma2 [4] If the infinitesimal transformations of group (5) satisfy the following r equetions

(
∂Rµ

∂t
ȧµ − B

∂t
)ξα

0 + (
∂Rν

∂aµ
ȧν − B

∂aµ
)ξα

µ −Bξ̇α
0 + Rµξ̇

α
µ = −Ġα (α = 1, 2, . . . , r), (4)

then the transformations are quasi-symmetrical transformations of given system.

3 Main result

3.1 Birkhoff equation

Let q = [q1, q2, · · · , qn] denote the generalized coordinate vector of nonholonomic system.

The rheonomous affine kinematic model constraints are represented by analytical relations

between the generalized coordinates and velocities q̇ = [q̇1, q̇2, · · · , q̇n], written as:

J(q)T q̇ = 0, (5)

where J(q) ∈ Rm×n

Generally, the Lagrange function is:

L(q, q̇, t) =
1

2
q̇T M(q)q̇ − V (t, q), (6)

where M(q) is the (n× n) definite positive symmetric inertia matrix.

Using the Lagrange formalism, the dynamics of a mechanical system can be described by

the following differential equations:

d

dt

∂L

∂q̇
− ∂L

∂q
= J(q)λ (s = 1, 2, · · · , n), (7)

where λ = (λ1, λ2, · · · , λm)T is the m-vector of Lagrange multipliers, is the control vector.

By [5], the multiplier λβ can be solved as a function of t, q, q̇ from the following equation

m∑

β=1

n∑
s=1

n∑

l=1

M−1
sl jlγjsβλβ
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= −
n∑

l=1

∂aγ

∂ql

q̇l − ∂aγ

∂t
+

n∑

l=1

jlr

n∑
s=1

M−1
sl ·

[
n∑

m=1

n∑

k=1

[k, m, s]q̇kq̇m +
∂V

∂qs

+
n∑

l=1

∂Mks

∂t
q̇k

]

= 0, (γ = 1, 2, · · · ,m) (8)

where Msl is an algebraic complement of M , and

[k, m, s] =
1

2

(
∂Mks

∂qm

+
∂Mms

∂qk

− ∂Mkm

∂qs

)
. (9)

Take the generalized momentum

p =
∂L

∂q̇
, (10)

and H = H(t, q, p) is the Hamiltonian

H = pT q̇ − L. (11)

From (8)-(11), we can express (7) as

q̇ =
∂H

∂p
, ṗs = −∂H

∂q
+ Q + u (s = 1, 2, · · · , n). (12)

where Q = J(q)λ(q, p, t), u = u′(q, p, t) = (u1, u2, · · · , un)

Let

aµ =

{
qµ (µ = 1, 2, . . . , n)

pµ−n (µ = n + 1, n + 2, . . . , 2n)
(13)

Rν =

{
pν (ν = 1, 2, . . . , n)

0 (ν = n + 1, n + 2, . . . , 2n)
(14)

B(a) = H (15)

where a = (a1, a2, . . . , an)T . Then the Birkhoff equation is (13), (14), (15), where Rν and B

are Birkhoff, functions and Birkhofian respectively.

3.2 Stability

Let Lyapunov function V (a, t) as a conserved quantity or a combination of some conserved

quantities. Without loss of generality, let V (a, t) = I1. We have the following conclusion:

Theorem 1. When I1 > 0, İ1 ≤ 0, then the system is asymptotic stability.
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4 An illustrative Example

Suppose rheonomous contraint is:

q̇1 + btq̇2 − bq2 = 0 (16)

The kinetic energy and potential energy are

T =
1

2
(q2

1 + q2
2), V = const (17)

where b is constant.

The corresponding holonomic system of (16), (17) is
{

q̈1 = − 1
1+b2t2

q̈2 = − bt
1+b2t2

(18)

Then 



a1 = q1

a2 = q2

a3 = q̇1 + 1
b
arctan bt

a4 = q̇2 + 1
2b

ln(1 + b2t2)

(19)

Equation (18) can be expressed as





ȧ1 = a3 − 1
b
arctan bt

ȧ2 = a4 − 1
2b

ln(1 + b2t2)

ȧ3 = 0

ȧ4 = 0

(20)

So we have

R1 = a3, R2 = a4, R3 = 0, R4 = 0, (21)

B =
1

2
[a3 − 1

b
arctan bt]2 +

1

2
[a4 − 1

2b
ln(1 + b2t2)]2, R2 = a4, R3 = 0, R4 = 0, (22)

Let 



ξ1
0 = 0

ξ1
1 = a3, ξ1

2 = 0, ξ1
3 = 0, ξ4

1 = 0,

G1 = −1
2
(a3)2

(23)

So





∆t = 0, (∆t)∗ = 0

∆a1 = ε, ∆a2 = 0, ∆a3 = 0, ∆a4 = 0,

∆ȧµ == 0

(24)

thus (23) is Noether quasi-symmetrical transformation, and conserved quantity is

I1 =
1

2
(a3)2, (25)

Thus the system is asymptotic stability.
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5 Conclusions
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